Set
A immutable sorted set module which allows customize compare behavior. The implementation uses balanced binary trees, and therefore searching and insertion take time logarithmic in the size of the map.
It also has three specialized inner modules Belt.Set.Int, Belt.Set.String and Belt.Set.Dict - This module separates data from function which is more verbose but slightly more efficient
REmodule PairComparator =
Belt.Id.MakeComparable({
type t = (int, int);
let cmp = ((a0, a1), (b0, b1)) =>
switch (Pervasives.compare(a0, b0)) {
| 0 => Pervasives.compare(a1, b1)
| c => c
};
});
let mySet = Belt.Set.make(~id=(module PairComparator));
let mySet2 = Belt.Set.add(mySet, (1, 2));
Note: This module's examples will assume a predeclared module for integers
called IntCmp
. It is declared like this:
REmodule IntCmp =
Belt.Id.MakeComparable({
type t = int;
let cmp = Pervasives.compare;
});
type t('value, 'identity);
'value
is the element type
'identity
the identity of the collection
type id('value, 'id) = Belt_Id.comparable('value, 'id);
The identity needed for making a set from scratch
let make: (~id: id('value, 'id)) => t('value, 'id);
Creates a new set by taking in the comparator
RElet set = Belt.Set.make(~id=(module IntCmp));
let fromArray: (array('value), ~id: id('value, 'id)) => t('value, 'id);
Creates new set from array of elements.
RElet s0 = Belt.Set.fromArray([|1, 3, 2, 4|], ~id=(module IntCmp))
s0->Belt.Set.toArray; /* [|1, 2, 3, 4|] */
let fromSortedArrayUnsafe: (array('value), ~id: id('value, 'id)) => t('value, 'id);
The same as [fromArray][#fromarray] except it is after assuming the input array is already sorted.
let isEmpty: t('a, 'b) => bool;
Checks if set is empty.
RElet empty = Belt.Set.fromArray([||], ~id=(module IntCmp));
let notEmpty = Belt.Set.fromArray([|1|],~id=(module IntCmp));
Belt.Set.isEmpty(empty); /* true */
Belt.Set.isEmpty(notEmpty); /* false */
let has: (t('value, 'id), 'value) => bool;
Checks if element exists in set.
RElet set = Belt.Set.fromArray([|1, 4, 2, 5|], ~id=(module IntCmp));
set->Belt.Set.has(3) /* false */
set->Belt.Set.has(1) /* true */
let add: (t('value, 'id), 'value) => t('value, 'id);
Adds element to set. If element existed in set, value is unchanged.
RElet s0 = Belt.Set.make(~id=(module IntCmp));
let s1 = s0->Belt.Set.add(1);
let s2 = s1->Belt.Set.add(2);
let s3 = s2->Belt.Set.add(2);
s0->Belt.Set.toArray; /* [||] */
s1->Belt.Set.toArray; /* [|1|] */
s2->Belt.Set.toArray; /* [|1, 2|] */
s3->Belt.Set.toArray; /* [|1,2 |] */
s2 == s3; /* true */
let mergeMany: (t('value, 'id), array('value)) => t('value, 'id);
Adds each element of array to set. Unlike add, the reference of return value might be changed even if all values in array already exist in set
RElet set = Belt.Set.make(~id=(module IntCmp));
let newSet = set->Belt.Set.mergeMany([|5, 4, 3, 2, 1|]);
newSet->Belt.Set.toArray; /* [|1, 2, 3, 4, 5|] */
let remove: (t('value, 'id), 'value) => t('value, 'id);
Removes element from set. If element wasn't existed in set, value is unchanged.
RElet s0 = Belt.Set.fromArray([|2,3,1,4,5|], ~id=(module IntCmp));
let s1 = s0->Belt.Set.remove(1);
let s2 = s1->Belt.Set.remove(3);
let s3 = s2->Belt.Set.remove(3);
s1->Belt.Set.toArray; /* [|2,3,4,5|] */
s2->Belt.Set.toArray; /* [|2,4,5|] */
s2 == s3; /* true */
let removeMany: (t('value, 'id), array('value)) => t('value, 'id);
Removes each element of array from set. Unlike remove, the reference of return value might be changed even if any values in array not existed in set.
RElet set = Belt.Set.fromArray([|1, 2, 3, 4|],~id=(module IntCmp));
let newSet = set->Belt.Set.removeMany([|5, 4, 3, 2, 1|]);
newSet->Belt.Set.toArray; /* [||] */
let union: (t('value, 'id), t('value, 'id)) => t('value, 'id);
Returns union of two sets.
RElet s0 = Belt.Set.fromArray([|5,2,3,5,6|], ~id=(module IntCmp));
let s1 = Belt.Set.fromArray([|5,2,3,1,5,4|], ~id=(module IntCmp));
let union = Belt.Set.union(s0, s1);
union->Belt.Set.toArray; /* [|1,2,3,4,5,6|] */
let intersect: (t('value, 'id), t('value, 'id)) => t('value, 'id);
Returns intersection of two sets.
RElet s0 = Belt.Set.fromArray([|5,2,3,5,6|], ~id=(module IntCmp));
let s1 = Belt.Set.fromArray([|5,2,3,1,5,4|], ~id=(module IntCmp));
let intersect = Belt.Set.intersect(s0, s1);
intersect->Belt.Set.toArray; /* [|2,3,5|] */
let diff: (t('value, 'id), t('value, 'id)) => t('value, 'id);
Returns elements from first set, not existing in second set.
RElet s0 = Belt.Set.fromArray([|5,2,3,5,6|], ~id=(module IntCmp));
let s1 = Belt.Set.fromArray([|5,2,3,1,5,4|], ~id=(module IntCmp));
Belt.Set.toArray(Belt.Set.diff(s0, s1)); /* [|6|] */
Belt.Set.toArray(Belt.Set.diff(s1,s0)); /* [|1,4|] */
let subset: (t('value, 'id), t('value, 'id)) => bool;
Checks if second set is subset of first set.
RElet s0 = Belt.Set.fromArray([|5,2,3,5,6|], ~id=(module IntCmp));
let s1 = Belt.Set.fromArray([|5,2,3,1,5,4|], ~id=(module IntCmp));
let s2 = Belt.Set.intersect(s0, s1);
Belt.Set.subset(s2, s0); /* true */
Belt.Set.subset(s2, s1); /* true */
Belt.Set.subset(s1, s0); /* false */
let cmp: (t('value, 'id), t('value, 'id)) => int;
Total ordering between sets. Can be used as the ordering function for doing sets of sets. It compares size first and then iterates over each element following the order of elements.
let eq: (t('value, 'id), t('value, 'id)) => bool;
Checks if two sets are equal.
RElet s0 = Belt.Set.fromArray([|5,2,3|], ~id=(module IntCmp));
let s1 = Belt.Set.fromArray([|3,2,5|], ~id=(module IntCmp));
Belt.Set.eq(s0, s1); /* true */
let forEachU: (t('value, 'id), [@bs] ('value => unit)) => unit;
Same as forEach but takes uncurried functon.
let forEach: (t('value, 'id), 'value => unit) => unit;
Applies function f
in turn to all elements of set in increasing order.
RElet s0 = Belt.Set.fromArray([|5,2,3,5,6|], ~id=(module IntCmp));
let acc = ref([]);
s0->Belt.Set.forEach(x => {
acc := Belt.List.add(acc^, x)
});
acc; /* [6,5,3,2] */
let reduceU: (t('value, 'id), 'a, [@bs] (('a, 'value) => 'a)) => 'a;
let reduce: (t('value, 'id), 'a, ('a, 'value) => 'a) => 'a;
Applies function f
to each element of set in increasing order. Function f
has two parameters: the item from the set and an “accumulator”, which starts with a value of initialValue
. reduce
returns the final value of the accumulator.
RElet s0 = Belt.Set.fromArray([|5,2,3,5,6|], ~id=(module IntCmp));
s0->Belt.Set.reduce([], (acc, element) =>
acc->Belt.List.add(element)
); /* [6,5,3,2] */
let everyU: (t('value, 'id), [@bs] ('value => bool)) => bool;
let every: (t('value, 'id), 'value => bool) => bool;
Checks if all elements of the set satisfy the predicate. Order unspecified.
RElet isEven = x => x mod 2 == 0;
let s0 = Belt.Set.fromArray([|2,4,6,8|], ~id=(module IntCmp));
s0->Belt.Set.every(isEven); /* true */
let someU: (t('value, 'id), [@bs] ('value => bool)) => bool;
let some: (t('value, 'id), 'value => bool) => bool;
Checks if at least one element of the set satisfies the predicate.
RElet isOdd = x => x mod 2 != 0;
let s0 = Belt.Set.fromArray([|1,2,4,6,8|], ~id=(module IntCmp));
s0->Belt.Set.some(isOdd); /* true */
let keepU: (t('value, 'id), [@bs] ('value => bool)) => t('value, 'id);
let keep: (t('value, 'id), 'value => bool) => t('value, 'id);
Returns the set of all elements that satisfy the predicate.
RElet isEven = x => x mod 2 == 0;
let s0 = Belt.Set.fromArray([|1,2,3,4,5|], ~id=(module IntCmp));
let s1 = s0->Belt.Set.keep(isEven);
s1->Belt.Set.toArray; /* [|2,4|] */
let partitionU: (t('value, 'id), [@bs] ('value => bool)) => (t('value, 'id), t('value, 'id));
let partition: (t('value, 'id), 'value => bool) => (t('value, 'id), t('value, 'id));
Returns a pair of sets, where first is the set of all the elements of set that satisfy the predicate, and second is the set of all the elements of set that do not satisfy the predicate.
RElet isOdd = x => x mod 2 != 0;
let s0 = Belt.Set.fromArray([|1,2,3,4,5|], ~id=(module IntCmp));
let (s1, s2) = s0->Belt.Set.partition(isOdd);
s1->Belt.Set.toArray; /* [|1,3,5|] */
s2->Belt.Set.toArray; /* [|2,4|] */
let size: t('value, 'id) => int;
Returns size of the set.
RElet s0 = Belt.Set.fromArray([|1,2,3,4|], ~id=(module IntCmp));
s0->Belt.Set.size; /* 4 */
let toArray: t('value, 'id) => array('value);
Returns array of ordered set elements.
RElet s0 = Belt.Set.fromArray([|3,2,1,5|], ~id=(module IntCmp));
s0->Belt.Set.toArray; /* [|1,2,3,5|] */
let toList: t('value, 'id) => list('value);
Returns list of ordered set elements.
RElet s0 = Belt.Set.fromArray([|3,2,1,5|], ~id=(module IntCmp));
s0->Belt.Set.toList; /* [1,2,3,5] */
let minimum: t('value, 'id) => option('value);
Returns minimum value of the collection. None
if collection is empty.
RElet s0 = Belt.Set.make(~id=(module IntCmp));
let s1 = Belt.Set.fromArray([|3,2,1,5|], ~id=(module IntCmp));
s0->Belt.Set.minimum; /* None */
s1->Belt.Set.minimum; /* Some(1) */
let minUndefined: t('value, 'id) => Js.undefined('value);
Returns minimum value of the collection. undefined
if collection is empty.
RElet s0 = Belt.Set.make(~id=(module IntCmp));
let s1 = Belt.Set.fromArray([|3,2,1,5|], ~id=(module IntCmp));
s0->Belt.Set.minUndefined; /* undefined */
s1->Belt.Set.minUndefined; /* 1 */
Returns maximum value of the collection. None
if collection is empty.
RElet s0 = Belt.Set.make(~id=(module IntCmp));
let s1 = Belt.Set.fromArray([|3,2,1,5|], ~id=(module IntCmp));
s0->Belt.Set.maximum; /* None */
s1->Belt.Set.maximum; /* Some(5) */
let maxUndefined: t('value, 'id) => Js.undefined('value);
Returns maximum value of the collection. undefined
if collection is empty.
RElet s0 = Belt.Set.make(~id=(module IntCmp));
let s1 = Belt.Set.fromArray([|3,2,1,5|], ~id=(module IntCmp));
s0->Belt.Set.maxUndefined; /* undefined */
s1->Belt.Set.maxUndefined; /* 5 */
let get: (t('value, 'id), 'value) => option('value);
Returns the reference of the value which is equivalent to value using the comparator specifiecd by this collection. Returns None
if element does not exist.
RElet s0 = Belt.Set.fromArray([|1,2,3,4,5|], ~id=(module IntCmp));
s0->Belt.Set.get(3); /* Some(3) */
s0->Belt.Set.get(20); /* None */
let getUndefined: (t('value, 'id), 'value) => Js.undefined('value);
Same as get but returns undefined
when element does not exist.
let getExn: (t('value, 'id), 'value) => 'value;
Same as get but raise when element does not exist.
let split: (t('value, 'id), 'value) => ((t('value, 'id), t('value, 'id)), bool);
Returns a tuple ((smaller, larger), present)
, present
is true when element exist in set.
RElet s0 = Belt.Set.fromArray([|1,2,3,4,5|], ~id=(module IntCmp));
let ((smaller, larger), present) = s0->Belt.Set.split(3);
present; /* true */
smaller->Belt.Set.toArray; /* [|1,2|] */
larger->Belt.Set.toArray; /* [|4,5|] */
let getData: t('value, 'id) => Belt_SetDict.t('value, 'id);
Advanced usage only
Returns the raw data (detached from comparator), but its type is still manifested, so that user can pass identity directly without boxing.
let getId: t('value, 'id) => id('value, 'id);
Advanced usage only
Returns the identity of set.
let packIdData: (~id: id('value, 'id), ~data: Belt_SetDict.t('value, 'id)) => t('value, 'id);
Advanced usage only
Returns the packed collection.