SetInt
Specalized when value type is int
, more efficient than the generic type, its compare behavior is fixed using the built-in comparison.
type value = int;
The type of the set elements.
type t;
Type of the sets.
let empty: t;
Empty set
RElet s0 = Belt.Set.Int.empty;
let fromArray: array(value) => t;
Creates new set from array of elements.
RElet s0 = Belt.Set.Int.fromArray([|1, 3, 2, 4|])
s0->Belt.Set.Int.toArray; /* [|1, 2, 3, 4|] */
let fromSortedArrayUnsafe: array(value) => t;
The same as [fromArray][#fromarray] except it is after assuming the input array is already sorted.
let isEmpty: t => bool;
Checks if set is empty.
RElet empty = Belt.Set.Int.fromArray([||]);
let notEmpty = Belt.Set.Int.fromArray([|1|]);
Belt.Set.Int.isEmpty(empty); /* true */
Belt.Set.Int.isEmpty(notEmpty); /* false */
let has: (t, value) => bool;
Checks if element exists in set.
RElet set = Belt.Set.Int.fromArray([|1, 4, 2, 5|]);
set->Belt.Set.Int.has(3) /* false */
set->Belt.Set.Int.has(1) /* true */
let add: (t, value) => t;
Adds element to set. If element existed in set, value is unchanged.
RElet s0 = Belt.Set.Int.empty;
let s1 = s0->Belt.Set.Int.add(1);
let s2 = s1->Belt.Set.Int.add(2);
let s3 = s2->Belt.Set.Int.add(2);
s0->Belt.Set.Int.toArray; /* [||] */
s1->Belt.Set.Int.toArray; /* [|1|] */
s2->Belt.Set.Int.toArray; /* [|1, 2|] */
s3->Belt.Set.Int.toArray; /* [|1,2 |] */
s2 == s3; /* true */
let mergeMany: (t, array(value)) => t;
Adds each element of array to set. Unlike add, the reference of return value might be changed even if all values in array already exist in set
RElet set = Belt.Set.Int.empty;
let newSet = set->Belt.Set.Int.mergeMany([|5, 4, 3, 2, 1|]);
newSet->Belt.Set.Int.toArray; /* [|1, 2, 3, 4, 5|] */
let remove: (t, value) => t;
Removes element from set. If element wasn't existed in set, value is unchanged.
RElet s0 = Belt.Set.Int.fromArray([|2,3,1,4,5|]);
let s1 = s0->Belt.Set.Int.remove(1);
let s2 = s1->Belt.Set.Int.remove(3);
let s3 = s2->Belt.Set.Int.remove(3);
s1->Belt.Set.Int.toArray; /* [|2,3,4,5|] */
s2->Belt.Set.Int.toArray; /* [|2,4,5|] */
s2 == s3; /* true */
let removeMany: (t, array(value)) => t;
Removes each element of array from set. Unlike remove, the reference of return value might be changed even if any values in array not existed in set.
RElet set = Belt.Set.Int.fromArray([|1, 2, 3, 4|]);
let newSet = set->Belt.Set.Int.removeMany([|5, 4, 3, 2, 1|]);
newSet->Belt.Set.Int.toArray; /* [||] */
let union: (t, t) => t;
Returns union of two sets.
RElet s0 = Belt.Set.Int.fromArray([|5,2,3,5,6|]);
let s1 = Belt.Set.Int.fromArray([|5,2,3,1,5,4|]);
let union = Belt.Set.Int.union(s0, s1);
union->Belt.Set.Int.toArray; /* [|1,2,3,4,5,6|] */
let intersect: (t, t) => t;
Returns intersection of two sets.
RE
let s0 = Belt.Set.Int.fromArray([|5,2,3,5,6|]);
let s1 = Belt.Set.Int.fromArray([|5,2,3,1,5,4|]);
let intersect = Belt.Set.Int.intersect(s0, s1);
intersect->Belt.Set.Int.toArray; /* [|2,3,5|] */
let diff: (t, t) => t;
Returns elements from first set, not existing in second set.
RElet s0 = Belt.Set.Int.fromArray([|5,2,3,5,6|]);
let s1 = Belt.Set.Int.fromArray([|5,2,3,1,5,4|]);
Belt.Set.Int.toArray(Belt.Set.Int.diff(s0, s1)); /* [|6|] */
Belt.Set.Int.toArray(Belt.Set.Int.diff(s1,s0)); /* [|1,4|] */
let subset: (t, t) => bool;
Checks if second set is subset of first set.
RElet s0 = Belt.Set.Int.fromArray([|5,2,3,5,6|]);
let s1 = Belt.Set.Int.fromArray([|5,2,3,1,5,4|]);
let s2 = Belt.Set.Int.intersect(s0, s1);
Belt.Set.Int.subset(s2, s0); /* true */
Belt.Set.Int.subset(s2, s1); /* true */
Belt.Set.Int.subset(s1, s0); /* false */
let cmp: (t, t) => int;
Total ordering between sets. Can be used as the ordering function for doing sets of sets. It compares size first and then iterates over each element following the order of elements.
let eq: (t, t) => bool;
Checks if two sets are equal.
RElet s0 = Belt.Set.Int.fromArray([|5,2,3|]);
let s1 = Belt.Set.Int.fromArray([|3,2,5|]);
Belt.Set.Int.eq(s0, s1); /* true */
let forEachU: (t, [@bs] (value => unit)) => unit;
Same as forEach but takes uncurried functon.
let forEach: (t, value => unit) => unit;
Applies function f
in turn to all elements of set in increasing order.
RElet s0 = Belt.Set.Int.fromArray([|5,2,3,5,6|]);
let acc = ref([]);
s0->Belt.Set.Int.forEach(x => {
acc := Belt.List.add(acc^, x)
});
acc; /* [6,5,3,2] */
let reduceU: (t, 'a, [@bs] (('a, value) => 'a)) => 'a;
let reduce: (t, 'a, ('a, value) => 'a) => 'a;
Applies function f
to each element of set in increasing order. Function f
has two parameters: the item from the set and an “accumulator”, which starts with a value of initialValue
. reduce
returns the final value of the accumulator.
RElet s0 = Belt.Set.Int.fromArray([|5,2,3,5,6|]);
s0->Belt.Set.Int.reduce([], (acc, element) =>
acc->Belt.List.add(element)
); /* [6,5,3,2] */
let everyU: (t, [@bs] (value => bool)) => bool;
let every: (t, value => bool) => bool;
Checks if all elements of the set satisfy the predicate. Order unspecified.
RElet isEven = x => x mod 2 == 0;
let s0 = Belt.Set.Int.fromArray([|2,4,6,8|]);
s0->Belt.Set.Int.every(isEven); /* true */
let someU: (t, [@bs] (value => bool)) => bool;
let some: (t, value => bool) => bool;
Checks if at least one element of the set satisfies the predicate.
RElet isOdd = x => x mod 2 != 0;
let s0 = Belt.Set.Int.fromArray([|1,2,4,6,8|]);
s0->Belt.Set.Int.some(isOdd); /* true */
let keepU: (t, [@bs] (value => bool)) => t;
let keep: (t, value => bool) => t;
Returns the set of all elements that satisfy the predicate.
RElet isEven = x => x mod 2 == 0;
let s0 = Belt.Set.Int.fromArray([|1,2,3,4,5|]);
let s1 = s0->Belt.Set.Int.keep(isEven);
s1->Belt.Set.Int.toArray; /* [|2,4|] */
let partitionU: (t, [@bs] (value => bool)) => (t, t);
let partition: (t, value => bool) => (t, t);
Returns a pair of sets, where first is the set of all the elements of set that satisfy the predicate, and second is the set of all the elements of set that do not satisfy the predicate.
RElet isOdd = x => x mod 2 != 0;
let s0 = Belt.Set.Int.fromArray([|1,2,3,4,5|]);
let (s1, s2) = s0->Belt.Set.Int.partition(isOdd);
s1->Belt.Set.Int.toArray; /* [|1,3,5|] */
s2->Belt.Set.Int.toArray; /* [|2,4|] */
let size: t => int;
Returns size of the set.
RElet s0 = Belt.Set.Int.fromArray([|1,2,3,4|]);
s0->Belt.Set.Int.size; /* 4 */
let toList: t => list(value);
Returns list of ordered set elements.
RElet s0 = Belt.Set.Int.fromArray([|3,2,1,5|]);
s0->Belt.Set.Int.toList; /* [1,2,3,5] */
let toArray: t => array(value);
Returns array of ordered set elements.
RElet s0 = Belt.Set.Int.fromArray([|3,2,1,5|]);
s0->Belt.Set.Int.toArray; /* [|1,2,3,5|] */
let minimum: t => option(value);
Returns minimum value of the collection. None
if collection is empty.
RElet s0 = Belt.Set.Int.empty;
let s1 = Belt.Set.Int.fromArray([|3,2,1,5|]);
s0->Belt.Set.Int.minimum; /* None */
s1->Belt.Set.Int.minimum; /* Some(1) */
let minUndefined: t => Js.undefined(value);
Returns minimum value of the collection. undefined
if collection is empty.
RElet s0 = Belt.Set.Int.empty;
let s1 = Belt.Set.Int.fromArray([|3,2,1,5|]);
s0->Belt.Set.Int.minUndefined; /* undefined */
s1->Belt.Set.Int.minUndefined; /* 1 */
let maximum: t => option(value);
Returns maximum value of the collection. None
if collection is empty.
RElet s0 = Belt.Set.Int.empty;
let s1 = Belt.Set.Int.fromArray([|3,2,1,5|]);
s0->Belt.Set.Int.maximum; /* None */
s1->Belt.Set.Int.maximum; /* Some(5) */
let maxUndefined: t => Js.undefined(value);
Returns maximum value of the collection. undefined
if collection is empty.
RElet s0 = Belt.Set.Int.empty;
let s1 = Belt.Set.Int.fromArray([|3,2,1,5|]);
s0->Belt.Set.Int.maxUndefined; /* undefined */
s1->Belt.Set.Int.maxUndefined; /* 5 */
let get: (t, value) => option(value);
Returns the reference of the value which is equivalent to value using the comparator specifiecd by this collection. Returns None
if element does not exist.
RElet s0 = Belt.Set.Int.fromArray([|1,2,3,4,5|]);
s0->Belt.Set.Int.get(3); /* Some(3) */
s0->Belt.Set.Int.get(20); /* None */
let getUndefined: (t, value) => Js.undefined(value);
Same as get but returns undefined
when element does not exist.
let getExn: (t, value) => value;
Same as get but raise when element does not exist.
let split: (t, value) => ((t, t), bool);
Returns a tuple ((l, r), present)
, where l
is the set of elements of set that are strictly less than value, r
is the set of elements of set that are strictly greater than value, present
is false
if set contains no element equal to value, or true
if set contains an element equal to value.
RElet s0 = Belt.Set.Int.fromArray([|1,2,3,4,5|]);
let ((smaller, larger), present) = s0->Belt.Set.Int.split(3);
present; /* true */
smaller->Belt.Set.Int.toArray; /* [|1,2|] */
larger->Belt.Set.Int.toArray; /* [|4,5|] */
let checkInvariantInternal: t => unit;
raise when invariant is not held